Повышение точности САР

Задача повышения точности САР обычно предполагает существенный пересмотр ее структуры. Возможны замены или добавления отдельных звеньев в контуре.

Общими методами повышения точности САР являются:

  1. Увеличение коэффициента усиления K разомкнутой цепи
  2. Повышение порядка астатизма r
  3. Применение регулирования по производным
  4. Использование комбинированного управления
  5. Введение неединичных обратных связей
  6. Включение масштабирующих устройств на входе или выходе

Повышение точности систем увеличением коэффициента усиления

Рассмотрим задачу повышения точности системы второго порядка, состоящей из 2х апериодических звеньев.

Повышение точности системы увеличением коэффициента усиления

Повышение точности системы увеличением коэффициента усиленияОшибка системы:
,
будет тем меньше, чем больше K.

Очевидно так же, что первые коэффициенты ошибок не будут равны нулю, но будут тем меньше, чем больше K:

Т.е. увеличение K уменьшает ошибки во всех типовых режимах.

Метод эффективен, широко применяется, но обычно увеличение K приводит к уменьшению запаса устойчивости (см. ЛАЧХ & ЛФЧХ)

Повышение точности систем увеличением порядка астатизма

Повышение порядка астатизма используется для устранения установившихся ошибок в типовых режимах движения.

Повышение точности системы увеличением порядка астатизма

Повышение точности системы увеличением порядка астатизмаПрименением интегрирующих или изодромных звеньев стремятся свести к нулю первые коэффициенты ошибок системы:

или

где: Kv = Ki K ; Ke = Ki1 Ki2 K.

Очевидно, что последовательное включение уже 2-х интеграторов приведет к появлению структурной неустойчивости, когда ни при каком значении общего коэффициента усиления невозможно получить устойчивую систему.

Это затруднение можно преодолеть использованием изодромных устройств:

Передаточная функция изодромного устройства

Повышение точности системы увеличением порядка астатизма

Повышение точности системы увеличением порядка астатизмаПо ЛАЧХ & ЛФЧХ видно, что постоянную времени изодромных звеньев Ti надо брать большой, дабы вносимый ими фазовый сдвиг не был существенным в области частоты среза wср и не влиял на устойчивость системы.

Поскольку постоянные времени изодромных устройств Ti, обычно, самые большие в системе, то определенные ими составляющие в переходном процессе затухают наиболее медленно, ухудшая тем самым динамические свойства системы. Это видно и по необращенным в ноль коэффициентам ошибок, поскольку коэффициент усиления интегратора в изодромном устройстве Ki=1/Ti обычно меньше единицы.

Повышение точности систем применением регулирования по производным от ошибки

Использование регулирования по производным от ошибки, позволяет повысить точность системы, поскольку:

  1. Система начнет чувствовать не просто наличие ошибки, но и тенденцию к ее изменению.
  2. Повышается запас устойчивости по фазе и можно поднять общий коэффициент усиления.

Повышение точности системы использованием регулирования по производным от ошибки

Повышение точности системы использованием регулирования по производным от ошибкиРаскладывая в ряд ПФ системы по ошибке Fx(s), получим соотношения для ошибок:

Сравнивая полученные коэффициенты с исходными можно увидеть, что все, кроме c0, уменьшаются. При соответствующем выборе Td можно обратить в ноль один из старших коэффициентов c1, или c2, или ...

Последовательное включение 2х пропорционально-дифференцирующих элементов, позволяет обратить в ноль два старших коэффициента ошибки.

Повышение точности систем применением комбинированного управления

САР является инвариантной по отношению к задающему или возмущающему воздействию, если после завершения переходного процесса, определяемого начальными условиями, ошибка системы не зависит от этого воздействия.

Снижение ошибки от сигнала задания введением сигнала КУ на входе регулятора

Рабочие файлы: [пример]

Повышение точности системы использованием комбинированного управленияМысленно поменяем сумматоры местами, тогда для структурной схемы очевидно:

где: Fэк(s) - эквивалентная ПФ для данной системы.

Условие полной инвариантности к сигналу задания- условие полной инвариантности к g(t) (оно наблюдается, если выходной сигнал четко повторяет входной, поэтому его можно получить, приравняв Fэк(s) к 1 или же Fx.эк(s) к нулю, т.к. Fx.эк(s) = 1- Fэк(s)).

Разложим 1/W(s) в ряд по возрастающим степеням оператора, тогда: j(s)=a0+t1s+t22s2+t33s3+..., т.е. ПФ j(s) должна состоять из масштабирующего (a0<<1) и дифференцирующих звеньев (t1s, t22s2, t33s3, ...).

Снижение ошибки от сигнала задания введением сигнала КУ после регулятора

Повышение точности системы введением сигнала КУ после регулятора Преобразованная эквивалентная структурная схема используемая для вывода условия инвариантности к сигналу задания

На рисунке показаны структурные схемы исходной и преобразованной системы. Для последней легко записать уравнение движения:

Условие полной инвариантности к сигналу задания- условие полной инвариантности к g(t) (оно наблюдается, если выходной сигнал четко повторяет входной, поэтому его можно получить, приравняв Fэк(s) к 1 или же Fx.эк(s) к нулю, т.к. Fx.эк(s) = 1- Fэк(s)).

Снижение ошибки от возмущающего сигнала применением КУ

Снижение ошибки от возмущающего сигнала применением КУДля данной системы ПФ по возмущению имеет вид:

Условие полной инвариантности к сигналу помехи - условие полной инвариантности к f(t) (можно получить, приравняв Ff(s) к нулю).

Достоинство КУ:

Недостатки КУ:

Повышение точности систем применением неединичных обратных связей

Рабочие файлы: [пример]

Повышение точности системы использованием неединичных обратных связейВведение не 1-ых ОС (j(s)) позволяет уменьшить ошибку вызванную задающим воздействием в замкнутой системе.

Для показанной на рисунке системы с не 1-ой ОС уравнение движения будет иметь вид:

Условие полной инвариантности к сигналу задания при не 1-ой ОС- условие полной инвариантности к g(t) (оно наблюдается, если выходной сигнал четко повторяет входной, поэтому его можно получить, приравняв Fэк(s) к 1 или же Fx.эк(s) к нулю, т.к. Fx.эк(s) = 1- Fэк(s)).

Разложим 1-1/W(s) в ряд по возрастающим степеням оператора, тогда: j(s)=1-(a0+t1s+t22s2+t33s3+...), те ПФ j(s) должна состоять из масштабирующего звена (1-a0, где a0<<1) создающего ООС по постоянной составляющей и дифференцирующих звеньев (t1s, t22s2, t33s3, ...), создающих ПОС по переменным составляющим сигнала. Заметим, что a00 только для статических систем.

Поскольку знаменатели функций F(s) (с 1-ой ОС) и Fэк(s) не равны, введение j(s) изменит характеристическое уравнение системы. А при полном выполнении условия инвариантности система буден находится на границе устойчивости.

Повышение точности систем применением масштабирующих устройств на входе или выходе

Повышение точности системы использованием масштабирующего устройства на входеПовышение точности системы использованием масштабирующего устройства на вхыходе